Viewpoint The tetrahedral dice are cast . . . and pack densely
نویسنده
چکیده
Tetrahedra are special among the platonic solids. They are the simplest polyhedra and the ones most unlike spheres. Surprisingly, much of our knowledge about the packing properties of tetrahedra is very recent: the past year has witnessed a sudden proliferation of novel, and often surprising, findings. Using Monte Carlo simulations, Haji-Akbari et al.[1] found that, upon compression, systems of hard tetrahedra spontaneously form a very dense quasicrystalline structure. Now, in a paper in Physical Review Letters, Alexander Jaoshvili, Massimo Porrati, and Paul Chaikin of New York University and Andria Esakia at Virginia Polytechnic Institute, both in the US, report their experiments on (almost) tetrahedral dice, which shed new light on the disordered structures that result when tetrahedra particles are poured into a (large) container [2]. Before discussing tetrahedral packing, it is useful to consider first the venerable (yet still not fully solved) problem of sphere packing. In 1611 Kepler proposed that the densest packing of spheres could be achieved by stacking close-packed planes of spheres. In such a packing, the spheres occupy π/ √ 18 ≈ 74.05% of space. The Kepler conjecture was (almost certainly) proven in 1998 by Thomas Hales. However, that does not mean that we know all there is to know about sphere packings: in addition to regular packing, spheres (and, in fact, most hard particles) also exhibit a much less understood packing, namely, random close packing (RCP). The quantitative study of random close packing started with J. D. Bernal’s experiments on the packing of ball bearings [3]. His experiments (and those of many others) suggested that it is impossible to compress disordered sphere packings beyond a volume fraction of approximately 64%. However, this observation does not necessarily imply that there exists a well-defined density of random close packing. It could just as well be that the rate at which the disordered hard-sphere packings can be compacted becomes very small around a volume fraction 64%—small, but not zero. If that were the case, RCP would not have a clear mechanical definition (that is, pouring and shaking may not lead to a well-defined RCP state). Indeed, in 2000, Torquato, Truskett, and Debenedetti [4] argued on the basis of computer simulations that states with a density above 64% can always be obtained by increasing the local order in a “random” sphere packing. This observation implies that the “mechanical” route to random close packing may be ill defined.
منابع مشابه
Experiments on the random packing of tetrahedral dice.
Tetrahedra may be the ultimate frustrating, disordered glass forming units. Our experiments on tetrahedral dice indicate the densest (volume fraction phi=0.76+/-.02, compared with phi(sphere)=0.64), most disordered, experimental, random packing of any set of congruent convex objects to date. Analysis of MRI scans yield translational and orientational correlation functions which decay as soon as...
متن کاملGeometrical frustration in amorphous and partially crystallized packings of spheres.
We study the persistence of a geometrically frustrated local order inside partially crystallized packings of equal-sized spheres. Measurements by x-ray tomography reveal previously unseen grain scale rearrangements occurring inside large three-dimensional packings as they crystallize. Three successive structural transitions are detected by a statistical description of the local volume fluctuati...
متن کامل“self-oblivion” in the Ground of “self-Alienation” with an Emphasis on Rumi’s Viewpoint
With a language of poem, allegory and elegant sentences, Rumi attempts to explore meaning and its causes, consequences and finally some solutions for its remedy in his own works. For him, human has a divine identity from which he has been cast away because of descent and has been involved in self-oblivion. What makes this initial mandatory oblivion more severe is dependence and association with...
متن کاملAthermal jamming of soft frictionless Platonic solids.
A mechanically based structural optimization method is utilized to explore the phenomena of jamming for assemblies of frictionless Platonic solids. Systems of these regular convex polyhedra exhibit mechanically stable phases with density substantially less than optimal for a given shape, revealing that thermal motion is necessary to access high-density phases. We confirm that the large system j...
متن کاملThe Possibility for Change of Morality in Mulla Mehdi Naraqi’s View
Regarding impact of education on morality and possibility of change in morality various viewpoints have been stated by scholars in the field. This issue has a direct relation to moral characteristics` state of being innate or acquisitive. This issue could be illustrated from Naraqi’s viewpoint. In other words, it is known for him that some characteristics are changeable but some not. He has fil...
متن کامل